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ABSTRACT

Hardening is the process of configuring IT systems to ensure the

security of the systems’ components and data they process or store.

The complexity of contemporary IT infrastructures, however, ren-

ders manual security hardening and maintenance a daunting task.

In many organizations, security-configuration guides expressed

in the SCAP (Security Content Automation Protocol) are used as

a basis for hardening, but these guides by themselves provide no

means for automatically implementing the required configurations.

In this paper, we propose an approach to automatically extract

the relevant information from publicly available security-config-

uration guides for Windows operating systems using natural lan-

guage processing. In a second step, the extracted information is

verified using the information of available settings stored in the

Windows Administrative Template files, in which the majority of

Windows configuration settings is defined.

We show that our implementation of this approach can extract

and implement 83% of the rules without any manual effort and 96%

with minimal manual effort. Furthermore, we conduct a study with

12 state-of-the-art guides consisting of 2014 rules with automatic

checks and show that our tooling can implement at least 97% of

them correctly. We have thus significantly reduced the effort of

securing systems based on existing security-configuration guides.

CCS CONCEPTS

• Security and privacy→ Software security engineering; Us-

ability in security and privacy; • Software and its engineer-

ing→ Software configurationmanagement and version con-

trol systems.
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1 INTRODUCTION

Misconfigurations reduce the security of a system by introducing

vulnerabilities that are often difficult to trace. A recent study [6] has

demonstrated that from the perspective of the operators there is

one major factor for security misconfigurations: lack of knowledge.

One attempt to deal with the lack of knowledge is to use exist-

ing security-configuration guides. These guides consist of several

rules for a specific software system such as Windows 10 or Red

Hat Enterprise Linux. Each rule explains which setting should be

set to which value to make the system more secure and why we

should apply it (e.g., Listing 1). Known publishers of such guides are

the Center for Internet Security (CIS) or the Defense Information

Systems Agency (DISA). Organizations and companies like Siemens

can use these guides to harden their systems.

One may be tempted to argue that we do not need security con-

figuration because companies like Microsoft make a strong effort

to configure their systems securely by default. These companies

invest a lot in security, of course, but security is just one concern,

in addition to others, including usability. Assume that there was

a handy setting for most customers, but it poses a small security

risk. The companies may be tempted to decide to have it activated

by default, whereas security-aware customers would deactivate

it. Similarly, we could argue for the data collection settings. They

bring knowledge to the companies to improve their products, and

all customers can profit from this. Thus, the companies may be

tempted to activate data collection settings by default. In contrast,

customers with high-security requirements would deactivate them

to reduce the risk that sensitive information is accidentally leaked

via the data collection. Thus, security-configuration guides from

independent organizations can help security-concerned customers

in making their systems more secure.

## /rule
The number of allowed bad logon attempts must be configured to three

or less.↪→

## /description
The account lockout feature, when enabled, prevents brute-force

password attacks on the system. The higher this value is, the
less effective the account lockout feature will be in protecting
the local system. The number of bad logon attempts must be
reasonably small to minimize the possibility of a successful
password attack while allowing for honest errors made during
normal user logon.

↪→

↪→

↪→

↪→

↪→

↪→

## /implementations/0/description
Configure the policy value for Computer Configuration >> Windows

Settings >> Security Settings >> Account Policies >> Account
Lockout Policy >> "Account lockout threshold" to "3" or fewer
invalid logon attempts (excluding "0", which is unacceptable).

↪→

↪→

↪→

Listing 1: Example of a rule in a Windows-related security-

configuration guide.



The publishers publish their recommendations on how to con-

figure a software system in formats like PDF and in the Extensible

Configuration Checklist Description Format (XCCDF), which is

part of the Security Content Automation Protocol (SCAP). In some

cases, these implementations are combined with machine-readable

and automatable checks. These checks are created manually accord-

ing to the specification written down in the security-configuration

guides. Although XCCDF is designed as a machine-readable for-

mat, instructions for implementing the security settings are only

contained in human-readable form in almost all cases. The notable

exception is the OpenSCAP project’s [16, 22] guides for Linux oper-

ating systems and applications, which for many rules contain shell

scripts and parts of Ansible playbooks. Therefore, existing guides

solve the lack-of-knowledge problem, but yield another problem:

Automatic implementations (or remediation) are not specified in the

SCAP standard. In contrast, the specification of automated checking

is very detailed.

Publishers sometimes deal with this problem by providing ad-

ditional artifacts, such as scripts or – in the case of Windows –

configuration backup files. The problem here is threefold. Firstly,

such artifacts do not exist for all guides. Secondly, the guides fre-

quently get updated: If we take Windows 10 as an example, there

will be at least one new guide every year published to deal with the

updated settings, e.g., introduced by the version 1909 update; minor

version updates deal with problems or changed requirements. As

a result, DISA, for example, is now at version 18 for its Windows

10 guide. Therefore, creating/maintaining a mechanism (even if it

can be based on some artifact provided by the publisher or) will

be a recurring, manual task. Thirdly, with stand-alone artifacts for

implementation, customization of guides, a feature which is central

to SCAP, becomes cumbersome and error-prone, because this re-

quires a manual effort to keep the customized guide in sync with the

separately-maintained implementation mechanism. However, easy

customization is essential: Experience shows that there is virtually

no use case in which a publicly available security-configuration

guide can be implemented without at least some changes.

The authoring process is depicted in Figure 1. The publisher

creates the guide in the XCCDF format and the corresponding

checks in the Open Vulnerability and Assessment Language (OVAL)

format. This is a manual process, as the publishers incorporate their

knowledge about the system and its architecture into the guide. In

the next step, an administrator uses the automated checks to assess

the state of their systems. The result is a list of the rules to which

the system is not compliant; our evaluation in § 3 of over 2000 rules

on systems using the default configuration shows that the rate of

satisfied rules varies between 0% and 27%, with an average of 17.7%.

Thus, for most of the rules, the (typically: default) configuration of

the system to be hardened has to be adjusted.

If the publisher has not provided a mechanism for automated

implementation, for every rule of this list, the administrator must

read the implementation/remediation section of the rule in the XC-

CDF or PDF form of the guide and implement the steps described

there. If a mechanism is provided, in most cases only a complete

implementation of all configuration settings is possible. This creates

significant manual effort for customization, especially if the imple-

mentation breaks functionality, but it is unclear which setting(s)

have caused the observed problems.

In sum, we address one main problem: There are existing guides

to configure systems securely, but we cannot implement the re-

quired configuration settings (taking into account necessary cus-

tomization and changes due to updates of the guides) without sig-

nificant manual effort.

Our solution to this problem, realized for Windows operating

systems and applications, consists of three major steps. First, we

process the files which define the Windows security policy settings

that exist on a Windows-based system. Windows security policy

settings are rules that administrators configure on a computer or

multiple devices for the purpose of protecting resources on a device

or network. [13] We can configure a policy setting with a policy

path and a value. The so-called Administrative Template (ADMX/L)

files define themajority of policy settings. They contain information

about valid policy paths, possible values for each policy setting,

and the underlying implementation of a policy setting within the

Windows registry. Thus, we extract this knowledge in the first step

and store it in a machine-readable format to access it during the

remediation. Second, we use natural language processing to extract

the settings and the intended values from the guides. We use the

information of the first step to verify that the extracted setting

exists and that the extracted value is a valid input for this setting

and can, therefore, reduce the risk of wrongly extracted values to

a minimum. Third, we translate the settings and values to their

real implementation using the information from the first step. Our

tools can use this information to implement as well as check the

configuration settings automatically.

Our contributions are:

• an approach to how existing Windows-related security-

configuration guides can be automatically implemented;

• a proof-of-concept implementation of our approach;

• a step-by-step documentation of our approach using the

DISA Windows Server 2016 guide [26] and an updated ver-

sion using the DISA Windows Server 2019 [28];

• an evaluation of our approach using existing guides from

DISA and CIS with over 2000 rules [27].

In §2, we explain the general idea of our automatic implementa-

tion, and in the subchapters, we present the technical details of our

proof-of-concept implementation. In §3, we use the DISAWindows

Server 2016 guide and 12 CIS guides to demonstrate the feasibility

of our approach. In §4, we discuss challenges and first experiences

in generalizing our approach to non-Windows systems as well as

additional future work. §5 treats related work and §6 concludes.

2 WINDOWS-RELATED SECURITY
CONFIGURATION

Generic Approach. The generic approach is depicted in Figure 2.

It shows the different stages of the envisioned process for auto-

matically implementing Windows-related security-configuration

guides. More specifically, the separate steps are defined as follows.

Extraction: Use natural language processing (NLP) for each rule to

automatically extract the information needed to implement

this rule.

Verification: Check with an automated mechanism that checks

whether the derived information is valid:

– Does the extracted policy path indeed exist?
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Figure 1: Current State of Implementation of Windows-

related Security-Configuration Guides

– Has the extracted value the required type for that setting?

– Does the extracted value meet the requirements of that

setting? Is it in the list of possible values or in the range

of allowed values?

If the path or the value is incorrect, the mechanism provides

useful feedback about possible paths or values.

Transformation to low-level: Transform Windows policy set-

tings into a representation of one of the underlying low-level

implementation mechanisms. This step is necessary because

almost none of the most popular configuration-management

frameworks can directly process the Windows policy set-

tings, but require the specification of an underlying imple-

mentation mechanism:

– Registry settings

– Secedit policy file entries

– Audit file entries.

Transformation to code: Transform these low-level implemen-

tation mechanisms into code for carrying out the implemen-

tation of each setting.

Implementation: Execute code on the system we want to harden

to implement the rules.

We emphasize that especially steps one and two are novel because

– to our best knowledge – there is no approach published that uses

NLP to extract policy settings from SCAP guides, nor is there an

approach that verifies extracted values using definition files. For the

evaluation of our approach, we assumed that an evaluation of the

complete systems provides more evidence for the usefulness and

feasibility of the presented approach than an evaluation of the first

two steps alone. Consequently, we had to design and implement

the remaining steps for our PoC implementation. In the end, we

achieved the first published system that reads Windows-related

security-configuration guides in the SCAP format and implements

them automatically.

The approach in detail. We discuss the details of our approach

and demonstrate its feasibility using a proof-of-concept (PoC) im-

plementation.

1 system: org.scapolite.implementation.win_gpo
2 ui_path: <String containing a valid Windows policy path, using
3 backslashes as separators>
4 value: <A YAML representation of a valid value for the
5 specified path>
6 verification_status: (Checked. | Unchecked.)

.
Listing 2: Syntax of the Windows policy automation

The steps of our actual implementation, which we use as a proof

of concept, are depicted in Figure 3. We describe them shortly here

and more in detail in the rest of this section.

The input of our PoC consists of guides in the SCAP format.

In the first step, we extract the necessary data for every rule to

automate the implementation of this rule using natural language

processing. The result is a set of rules enriched with the configu-

ration settings in a machine-readable format. These configuration

settings are then passed to the verification process: it has to be ver-

ified that the extracted data (a Windows policy path and required

policy values) is valid. Our implementation uses the information of

manually created verification rules for what essentially are legacy

configuration settings combined with information extracted from

the Windows administrative template files to verify the extracted

values. To make the verification process as fast as possible, we pro-

cess the latter files a priori and store the information we need in a

database format.

If the verification is successful, the low-level automation needed

to implement the rule is generated and also stored within the rule.

Depending on the chosen implementation mechanism, these are

used to create (1) either a group policy backup, which then can

be imported on a Domain Controller to secure all systems in an

Active Directory or (2) a JSON file used by a PowerShell script for

implementing the settings. Additionally, our tooling can check the

rules using the JSON files, but as SCAP already covers this aspect,

we will not look deeper into this facet of our PoC.

In our PoC implementation, only the second and third steps re-

quire a minimum of manual interaction; the other steps are entirely

automated. The dotted line between the Verification and the Config-

uration Settings in Figure 3 indicates that the person automating the

security-configuration guide may have to execute the verification

more than once and adjust the values until every rule is marked as

checked by the verification mechanism.

In the following, we describe each of these steps. Tooling has

been carried out in Python, except for a PowerShell framework

for implementing and checking Windows security configurations

using the output of Step 4. As a real-life example, we use the DISA

Windows Server 2016 Security Technical Implementation Guide [7].

We created a GitHub repository [26], where we conducted all the

steps, and created a commit and a tag after every step and reference

them by their tags. 1

1For representing the guide wihin Github, we use the YAML/Markdown-based Scapolite
format developed within Siemens, which is better suited than SCAP for authoring and
maintenance. The approach, though, is independent of the format.
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2.1 Natural-language-processing-based
extraction of Windows Policy Automations

The first step of our PoC implementation is the extraction of the

needed values using NLP. Before we can extract the information

needed to implement a Windows-related rule automatically, we

had to define the structure of the machine-readable constructs,
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Figure 3: Overview of the steps of our actual implementa-

tion.
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TOq2

.*

NN, NNP
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Figure 4: Example of an extraction rule as a nondeterminis-

tic finite automaton.

1 id: SV-88407
2 rule: <see below>
3 implementations:
4 - description: <see below>
5 automations:
6 - system: org.scapolite.implementation.win_gpo
7 ui_path: 'Computer Configuration\Policies\Windows

Settings\Security Settings\Local Policies\User Rights
Assignment\Back up files and directories'

↪→

↪→

8 value:
9 - Administrators
10 ---
11

12 ## /rule
13 The Backup files and directories user right must only be assigned to

the Administrators group.↪→

14 ## /implementations/0/description
15 Configure the policy value for Computer Configuration >> Windows

Settings >> Security Settings >> Local Policies >> User Rights
Assignment >> "Back up files and directories" to include only
the following accounts or groups:

↪→

↪→

↪→

16 - Administrators

Listing 3: Example rule of the DISAWindows Server 2016 in

YAML/Markdown form, incl. a Windows policy automation

starting in line 6 (blue).

how they are integrated into the rule structure, and what has to be

extracted to implement a rule.

For specifying Windows policy settings, the structure must pro-

vide information about the policy path and the required value. The

type of the value (string, list, integer, et cetera) depends on the path;

hence the specification of the automation syntax must refer to the

set of valid Windows policy settings as shown in Listing 2. Listing 3

shows the usage of a policy automation in the rule SV-88407 of the

Windows Server 2016 guide. In an ideal scenario, the rule already

contains the machine-readable automation objects, but this is not

the case for guides published in the SCAP. Thus, we needed to

extract the information about required policy settings from the

human-readable description in the guide. To this end, we used the

Natural Language Toolkit (NLTK) [1]. Due to the highly schematic

structure of the guides under consideration, only eleven extraction

rules had to be defined to process most of the rules. One of the rules

is presented here in Listing 4 and Figure 4. The listing shows the

definition of such an extraction rule as part of a grammar in NLTK.

IN, TO, etc. refer to the corresponding part-of-speech (POS) tags.

As we have ten rules, our grammar to extract the values consists

of ten rule definitions. To make the idea more precise, Figure 4 is

SENTENCE_WITH_ENABLED_WITH_X_SELECTED_FOR_Y:
{<IN> <.*>+ <TO> <VBN|VBD|VB> <IN> <.*>+ <VBN|VBD> <IN> <NN|NNP>+

<.>}↪→

Listing 4: Example of an extraction rule with POS tags.



id: controlpaneldisplay__cpl_personalization_nolockscreencamera
registry:

name: NoLockScreenCamera
path: Software\Policies\Microsoft\Windows\Personalization
hive: HKEY_LOCAL_MACHINE
type: REG_DWORD
enabled_value: 1
disabled_value: 0

Listing 5: Example of a relationship between the id and the

definition of the registry to set.

presenting the same rule as a nondeterministic finite automaton;

q0 marks the start state and q11 the end state.
We use NLTK to label the text of the description of a rule with

POS tags. Afterward, the tagged sentences are passed to the gram-

mar. If a sentence or a part of a sentence matches an extraction

rule, then we know that here we can extract information for the

automatic implementation. We use this sentence from rule SV-92831

as an example: “Configure the policy value for Computer Configu-

ration » Administrative Templates » MS Security Guide » Configure

SMBv1 client driver to Enabled with Disable driver (recommended) se-

lected for Configure MrxSmb10 driver.” Now, we use NLTK to get the

POS tags: (’Configure’, ’VB’), (’the’, ’DT’), ..., (’for’, ’IN’), (’Computer’,

’NNP’), ..., (’driver’, ’NN’), (’to’, ’TO’), (’Enabled’, ’VB’), (’with’, ’IN’),

(’Disable’, ’JJ’), ..., (’)’, ’)’), (’selected’, ’VBN’), (’for’, ’IN’), (’Configure’,

’NNP’), ..., (’driver’, ’NN’), (’.’, ’.’) The segment starting at for matches

the pattern defined in the extraction rule, and we would reach the

end state of Figure 4. Using our definition of the extraction rule, we

know that we have the policy path in the part within the POS tags

IN and TO, the first value between TO and IN, the second value

between IN and VBN, IN, and the name of the option for which the

second value has to be set between VBN, IN, and ’.’.

As already mentioned, we need only eleven extraction rules to

extract information for most of the DISA Windows Server 2016

guide; for a comparable CIS guide, we defined ten rules. Please note

that the extraction using NLP is as simple as this only because DISA

and CIS write their guides in a highly schematic way.

If the automatic extraction process could not obtain any or only

ambiguous information for a setting to set, the respective rules

are marked in this step of the process. For these rules, automation

objects have to be created manually using the hints from the auto-

matic extraction. For the analysis of the degree of automation, we

refer to §3.1. Listing 3 is the result of a successful extraction carried

out by our tool.2

2.2 Verification of Windows policy
automations

As already mentioned in §2.1, the set of available policy settings

determine the syntax (and semantics) of the Windows policy au-

tomations. The set of available policy settings varies between differ-

ent versions of operating systems and policy-managed applications.

Thus, we can determine the validity of a policy automation for a

specific version of OS or an application. As mentioned before, the

ADMX/L files define the majority of Windows policy settings. The

Windows OSs use these files to display the GUI for configuring

policy settings via point-and-click and keep the policy content and

2Tag: step-3-extract-configurations-values-with-nlp

the actual implementation of the settings in the registry in sync.

Microsoft regularly issues updates of the ADMX/L files.

To make this more visual, we provide another example: From

the ControlPanelDisplay.admx and the ControlPanelDisplay.adml

files located under policies on Windows Server 2016 instances, our

exporter can get the information that the setting with the policy

path Computer Configuration \ ... Control Panel \ Personalization

\ Prevent enabling lock screen camera has the id CPL_ Personal-

ization_ NoLockScreenCamera. We store this relationship and the

information to which registry this id belongs in our export; this is

presented in Listing 5. Here, we can get the information on which

hive, path, and registry name are affected. Furthermore, we know

that only Enabled and Disabled are valid options for this setting

and that we can translate them to 1 and 0, respectively.

There are, however, also Windows policy settings that are not

defined via ADMX/L files. These other settings are represented

through entries in either a special configuration file (GptTmpl.INF)

or a CSV file (audit.CSV) when creating a file-based representation

of policy settings on a Windows OS through the lgpo.exe [12]

tool provided by Microsoft. Unfortunately, there exists – to our

best knowledge – no machine-readable representation that speci-

fies these policy settings. Luckily, we could extract many of these

specifications for configuration definitions from the SaltStack [23]

implementation of the win_lgpo module for managing Windows

configuration settings. (From the 196 settings configurable via the

INF file, we could obtain 139 from SaltStack’s implementation; the

remaining specifications, which we encountered in the course of

our work on several Windows OS versions, were added manually.)

Furthermore, we could extract the specifications for all settings

handled via audit.CSV via parsing a given audit.CSV file. Thus,

the manual effort required for dealing with these non-ADMX/L set-

tings was negligible when compared to the over 4000 configuration

specifications we could extract automatically.

With the information of the knowledge extraction, the verifica-

tion process can now determine for each configuration setting if

the policy path is valid and, if so, whether the provided value is

admissible for that particular policy path.

We have implemented our tooling such that the Windows policy

automations in a given guide are parsed and verified. If the policy

path exists and the given value is acceptable, the automation is

marked as checked. If not, the automation is enriched with as much

information as possible:

• If the policy path does not exist, information about similar

policy paths is supplied, using the Levenshtein distance [11]

on character and word basis over the set of valid policy paths.

This set is a byproduct of our import step. To have the set

of valid policy paths accessible is one reason to create those

files a priori. Listing 6 a) provides an example of the result

of the verification step.

• If the value is not admissible for the given policy path, infor-

mation about admissible values is added to the automation –

see Listing 6b) and c).

We proceed as follows to verify and correct the policy automations:

(1) The verification mechanism is run a first time.3

(2) The user reviews the reported errors and corrects them.

3Tag: step-4-verification-1



1 ui_path: ... \ Control Panel \ Personalization \ Prevent
2 enabling lock screen
3 value: Enabled
4 error_class: NOT_FOUND policy name "preventenablinglockscreen"
5 error_hint: " The given path was not found, but there were 3 similar

policies. If the UI path you were looking for is in the array,
please replace the original UI path with the new UI path."

↪→

↪→

6 candidates:
7 - Control Panel\Personalization\Prevent enabling lock screen camera
8 - ... \ Prevent enabling lock screen slide show
9 - ... \ Prevent changing the color scheme
10 ---
11 ui_path: '... \ Network security: LAN Manager authentication level'
12 value: Send NTLMv2 response
13 error_class: CONFIGURE
14 error_hint: "To apply this rule, please choose a setting value for

each sub-setting in candidates. Next, replace the content of the
'value' attribute with the content of candidates."

↪→

↪→

15 candidates:
16 - Send LM & TLM responses - use NTLMv2 session security if negotiated
17 - Send NTLMv2 response only. Refuse LM & NTLM
18 - Send NTLM response only
19 ...
20 ---
21 ui_path: ... \ Configure Windows Defender SmartScreen
22 value: Enabled
23 candidates:
24 main_setting:
25 - Disabled
26 - Enabled
27 Pick one of the following settings:
28 - Warn
29 - Disabled
30 - Warn and prevent bypass

Listing 6: Failed verifications: a) Policy path does not exist;

information about 3 possible options. b) Specified value does

not exist; admissible values provided. c) Policy setting under-

specified; request for additional value.

(3) Verification is re-run either on a rule-by-rule basis or for the

complete guide.4

(4) Once all errors have been corrected, an export pairing the

human-readable description and the policy automation for

each rule is created, allowing the user to verify very quickly

that the automation indeed faithfully reflects the human-

readable specification.5

This verification seems simple, but studies have shown that 42%

of the configuration errors that caused high-impact incidents are

obvious errors (e.g., typos) [31] and that a significant number of

configuration errors are due to compatibility issues[40]. Our verifi-

cation is able to catch such problems at the earliest possible stage.

2.3 Generation of low-level implementation
mechanisms

Windows policy settings are implemented through registry set-

tings, INF policy file entries, and audit file entries. To represent

these mechanisms within a guide, we introduce automation exten-

sions for these three mechanisms. Using the information gathered

as described in §2.2, we implemented a transformation from the

policy automation into the corresponding low-level automation

extension.6

4Tag: step-4c-fix
5Tag: step-5-create-xlsx-report-for-the-current-guide
6Tag: step-6-enrich-scapolite-with-low-level-automations, a table with all the low-level
automations can be found under xlsx/report_with_low_level_automations.xlsx.

1 ui_path: ...\Apply UAC restrictions to local accounts on network

logons↪→

2 value: Enabled
3 verification_status: Checked.
4 - system: org.scapolite.implementation.windows_registry
5 config: Computer
6 registry_key:

SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System↪→

7 value_name: LocalAccountTokenFilterPolicy
8 action: DWORD:0

Listing 7: Example of aWindows policy automation and the

resulting Windows registry automation.

Listing 7 provides an example: according to the Windows pol-

icy automation (line 1 to 4), the value Enabled has to be set for

the policy setting with path ... \ Apply UAC restrictions to local ac-

counts on network logons. Using information extracted from the

ADMX/L files, we can generate the Windows registry automa-

tion: the registry key under the path SOFTWARE \ Microsoft \ Win-

dows\CurrentVersion\Policies\System with the value name LocalAccount-

TokenFilterPolicy has to be set to a DWORD with the value 0.

2.4 Transformation into code

The main idea between the separation of this step and the actual

implementation was that we could execute all the previous steps

on one machine, export the information, and do only the actual

implementation on the system under test. Thus, a central instance

can be used for storing and processing relevant guides; systems

under test can fetch the required data for implementing (and testing)

security configurations from that central server. To further facilitate

this approach, we implemented an export from a guide containing

low-level automation for Windows into a JSON document that

contains all data relevant for implementing each rule with the

associated automation(s).

In order to support implementations via policies (either via local

group policies or via the Active Directory capabilities), we can

also automatically generate policy backups based on the extracted

information. We have implemented this step as part of a continuous-

integration where changes to automation in a guide lead to an

automated re-generation of both scripts and policy backups.7

2.5 Implementation of the rules on the system
using PowerShell

When choosing a target language framework to use to implement

the rules using the information of the tow-level automation de-

scribed in §§2.2 and 2.3, we decided to use PowerShell for the

following reasons:

• Common configuration management frameworks like Ansi-

ble, Puppet, Chef, and SaltStack cannot handle the Windows

policy settings or use PowerShell to implement them. Thus,

we decided to use PowerShell without a configuration frame-

work as a wrapper to implement the rules.

• Microsoft’s efforts to allow code/script-based configuration

management of Windows rather than the GUI-based mecha-

nism centering on the policy editor are based on PowerShell.

7Tag: step-8-export, policy backup folder for each profile under lgpo_backups.



Table 1: Extracted, verified, and automated rules.

Categories # % % of OVAL

Rules 274 100

Configurations Extracted with NLP 198 72.3 95.6

Rules without extracted values 76 27.7 36.7

First-Time Verified 173 63.1 83.6

Not verified the first time 25 9.1 12.1

Non-automatable but extracted 2 0.7 1.0

Automatable but not extracted 4 1.5 1.9

Verified after manual correction 27 9.9 13.0

Automated Rules 200 73.0 96.6

• PowerShell is installed by default on all Windows OSs that

are still in mainstream support by Microsoft.

• To fully leverage the ability to generate mechanisms for

rule-by-rule implementation rather than the bulk implemen-

tation offered, e.g., in the form of policy backups, we looked

for robust roll-back functionality that allowed us to reset a

configuration reliably to its previous value.

Thus, we have created a PowerShell library that, based on the

JSON file, applies, checks, and reverts single as well as several

or all rules. As mentioned before, our tooling uses the extracted

information to check whether the system is compliant to a rule au-

tomatically. This functionality is already covered within SCAP, and

there are many SCAP-compliant scanners. Therefore, the checking

functionality is not in the focus of this paper.

Our PowerShell library uses Windows tools that assure that the

configuration changes are reflected in the local policy: secedit, au-

ditpol, and LGPO.exe [12]. In the end, we can implement a security-

configuration guide by running one PowerShell command.

3 EVALUATION

To demonstrate the presented approach’s potential, we use the real-

life example of realizing automatic rule-by-rule implementations for

the DISA Microsoft Windows Server 2016 guide Benchmark [7] for

an evaluation.8 The benchmark consists of 207 rules with automatic

checks and 67 rules without automatic checks.

The results of all steps shown below are available for review

[26]. Every step is denoted as a commit and marked with a tag.

Thus, a diff view between a commit and its predecessor reveals the

constructs added, removed, or changed in this step. In this article,

we will concentrate on this repository. Additionally, we created a

new repository with the DISA Windows Server 2019 guide[28] and

executed the same steps to demonstrate that our approach works

on recent SCAP documents as well. Thus, the fact that we used

Windows Server 2016 should not be a threat to our evaluation’s

validity.

We seek to answer the following Research Questions:

8 We choose DISA’s guide because their SCAP content is public. Only CIS members
can access CIS’s SCAP content, whereas their PDFs are publicly available.

RQ1 For how many rules can we automatically derive an im-

plementation from the text in natural language? How high

is their percentage?

RQ2 How many of the extracted rules are automatable, and

how many automatable rules were not extracted?

RQ3 After correcting wrongly extracted automations: How

many rules can we implement automatically for the complete

guide?

RQ4 How much time does our approach require to extract the

information, verify it, and implement the rule?

RQ5 Howmany rules are implemented correctly in accordance

with the automated checks?

We will use the DISA Windows Server 2016 guide to answer

RQ1-4 and several CIS guides to answer RQ5. For RQ5, we use

CIS guides because, for them, we have the automatic checks and

can assess a given system using their CIS-CAT tool.

3.1 Degree of automation

To answer RQ1, RQ2, and RQ3, we examine the steps regarding

the extraction of Windows policy automation using NLP and the

verification of the found policy paths and values. The results are

depicted in Table 1. From the 274 rules in the Windows Server 2016

guide, we can extract for 198 rules a possible policy setting with

possible values. Afterward, from the 198 possible configuration

path/value pairs, 173 can be directly verified as valid configuration

settings by the first verification step. These 198 rules mean that for

63% of the rules, we can extract both the policy path and the required

value and verify that this value is valid for the particular policy path

without any manual effort. Thus, we could answer RQ1. From the

remaining 25 rules, for two rules, potential configuration settings

and values have been extracted erroneously: with our automation

mechanisms, we could not automate these two rules. We removed

the erroneously created automations for theses two rulesmanually.9

Conversely, for four rules that we could automate, neither the policy

path nor the required value was extracted. In this case, we added

the automation manually.10 Thus, the ratio of rules not added to

the set of rules to automate, although they are automatable, lies

at 1.5%, whereas the ratio of rules which are not automatable and

still extracted is 0.7% regarding all rules. For the remaining 23 rules

that were extracted but could not be verified in the first round, we

created the correct automation based on the extracted information

enriched with the verification process’s hints.11

If one sees the NLP based extraction process as a classifier with

the classes automatable and non-automatable, the false-positive

rate of this classifier is at 2.7% and the false-negative rate at 2.0%.

We had to adjust 27 rules manually. Thus, for 90.1% of all rules,

respectively, 87% of the automatable rules, no manual action was

needed throughout the process. In summary, these numbers answer

RQ2 and give strong evidence for the importance of our verification

step because otherwise, these rules might be applied wrongly or

not at all.

After the execution of the extraction and the verification step

and the manual adjustments, we now have 200 rules which can be

9Tag: step-4a-fix-rules-which-have-been-imported-but-are-not-automatable
10Tag: step-4b-fix-rules-which-have-not-been-imported-but-are-automatable
11Tag: step-4c-fix



Table 2: Time needed to execute the single steps with all 200

automatable rules of the DISA Windows Server 2016 guide.

Step Time (s)

Knowledge Extraction from ADMX/L 81.59

Import into Scapolite 8.02

NLP extraction of policy automations 16.93

Verification of policy automations 23.48

Export automations in JSON 13.90

Export automations in XLSX 14.03

Export policy backups from JSON 1.65

Check all rules for compliance 13.96

Implement automatable rules one-by-one 73.35

Σ 245.91

automated and have values that are verified to be valid for the given

configuration decisions. Therefore, the grade of automation we can

achieve on the set of the 274 rules is at 73.0%, respectively, at 96.6%

if we are only considering the 207 automatable rules (classified

as automatable by DISA). This number answers RQ3. Thus, our

approach reduces the number of rules which have to be checked or

set manually on the system under test significantly.

3.2 Time

Table 2 shows time values for each of the automated steps.12 The

short execution time per rule enables an application in CI ap-

proaches, which answers RQ4 partially.

If we want to calculate the overall time, we also have to in-

clude the time it takes to correct the wrongly extracted automa-

tions. According to Table 1, 25 rules were not verified the first time.

Because of the feedback included in the rule, we assume that it

takes 10s to correct such a rule. For the remaining four plus two

rules, we assume that it takes at most 2min per rule to correct it.

These assumptions are also backed by the feedback of the users

of our tools at Siemens. Therefore, we end up with a total time of

245.91s + 25 ∗ 10s + 6 ∗ 120s = 1215.91s ≈ 20min for all rules or 6s
per rule. Thus, RQ4 could be answered, too.

3.3 Correct Application

In the last step of our evaluation, we want to answer whether our

approach is applying the security-configuration guides correctly.

Incorrectly implemented rules can result from faults in the ADMX/L

importer, the verification process, or the PowerShell library. Here,

our idea was that after applying a security-configuration guide

to a system, the system should be configured as specified in the

guide. For this experiment, we use the standardized OVAL checks

as ground truth. Thus, we used guides which are Windows-related

and for which we have automated checks. Therefore, we used in this

step 12 different security-configuration guides from the CIS, which

12 All the steps are conducted by running different commands from the command-line.
We ran every command 50 times and averaged the elapsed time to evaluate the speed
of the single steps. Configuration: 3.1 GHz Intel Core i7 with 16 GB RAM, Python
3.7.4. The only steps implemented in PowerShell are the application viz. the check for
compliance step as these were designed to be executed on the system under test, in our
case, a Windows-based system, without installing any additional software. PowerShell
Version 5.1.14393 was used.

are listed in Table 3, totaling over 2000 rules: Four Windows-based

OS’s, six components of the Office package, and two browsers.

We conducted the evaluation as follows: First, every security-

configuration guide was automated through the same process, as

explained in §2. Next, we set up a clean environment for every

system.13 Additionally, we installed a SCAP-compliant scanner

on the machines, i.e., the CIS-CAT tool [4]. Next, we executed the

checks in the clean environment to compare the clean state with the

hardened state to show that the implementation of guides makes

the system more secure. Afterwards, the guides are implemented

using the automation generated as described in §2. Now the checks

are rerun to test whether the implementation was correct. The

results are depicted in Table 3. We also published the check reports

before and after the implementation on GitHub [27]. Within this

repository, one can find for every checked guide a before.html and

after.html containing the result of the automatic check created using

the CIS-CAT tool.

Note that we only consider the rules which have OVAL checks for

the calculation of the percentages. We see that for the OSs between

16.9 and 26.3% of the rules are already set up in a compliant way,

whereas nearly no rule is pre-configured securely for the other

components. Nevertheless, even 26.3% of already fulfilled rules of

the OSs imply that the majority of the settings are configured in

an insecure way on a clean system. After applying the rules, the

percentage of compliant rules is between 95 and 100% for all guides.

That we do not reach 100% compliance relative to the results of

the CIS-CAT checker tool is due to errors in the guides, some of

them in the automated check, others in the descriptive text. For ex-

ample, some checks are overspecified, i.e., they expect more changes

than actually occur when implementing the corresponding con-

figuration setting: the rule 18.5.9.1 of the Windows 10 benchmark

changes only a single registry entry, but the corresponding check

refers to three different entries. Also, some rules have automatic

checks which test for wrong values. For example, the check for the

rule 1.8.7.4 of the Word guide expects a different value (namely 0)

than the value, which is set if the rule is implemented manually

following the security-configuration guide. Thus, we have in this

rule precisely the difference of implementation and check we want

to overcome with our approach. Finally, there were some errors

regarding the description of the implementation provided in the

guides. For example, rule 1.8.7.2.7 of the Word guide specifies that

the setting should be enabled, although title and description suggest

disabling the setting. Another error in a guide actually is due to a

misspelling of the ADMX/L template file provided by Microsoft. For

example, rule 1.13.2.1.5 of the Outlook guide specifies the value to

be implement asWhen online always retrieve the CRL, but our tool

could not validate this value for this setting because of a misspelling

in a template file. There, the value is written asWhen online always

retreive the CRL.

All in all, we achieved compliance for 1965 rules (i.e., 97.6%)

after implementing the guides. For the OSs, we have the highest

absolute gain of compliant rules (between 237 and 404 rules), but

in relative numbers, we are only gaining between 71% and 80%,

13 For the OS’s, we have set up every system in a new VM by installing the OS
directly from the latest ISO down-loadable from Microsoft. As a VM provider, we used
VirtualBox. For the other components, e.g., Chrome or PowerPoint, they were directly
installed on a clean Windows 10 instance.



Table 3: # rules per guide compliant to the given guide before and after implementing guide automatically. Highest value of a

column: dark gray, lowest: light gray.

Guide # of Rules OVAL Before % After % Δ Δ %

Google Chrome for Windows 20 20 0 0 19 95.0 19 95.0

Internet Explorer 11 156 136 1 0.7 132 97.1 131 96.3

Microsoft Office 53 53 2 3.8 52 98.1 50 94.3

Microsoft Access 9 9 0 0 9 100 9 100

Microsoft Excel 34 34 0 0 34 100 34 100

Microsoft Outlook 75 73 3 4.1 72 98.6 69 94.5

Microsoft PowerPoint 18 18 1 5.6 18 100 17 94.4

Microsoft Word 24 24 0 0 23 95.8 23 95.8

Windows 7 390 386 87 22.5 377 97.7 290 75.1

Windows 8.1 429 425 90 21.2 415 97.6 325 76.5

Windows 10 505 502 85 16.9 489 97.4 404 80.5

Windows Server 2016 371 334 88 26.3 325 97.3 237 71.0

Σ 2084 2014 357 17.7 1965 97.6 1608 79,8

whereas for the rest, we have a gain of over 90%. Please note that

our approach can also implement the settings which were already

compliant on a clean instance, but we have chosen this scenario

because it seemed more relevant and natural. The alternative would

have been to create an instance in which every setting is configured

to a non-compliant value.

Discussion. In RQ1, we asked for the percentage of rules for

which we can automatically extract the implementation. If our

approach extracted the implementation only for a small fraction

of rules, it would be useless in real-world applications. Since we

extracted for 63% of all rules and 96% of automatable rules an

implementation, we can rule out this concern.

In RQ2, we looked for the percentage of false negative and false

positives of our extraction process. If these numbers were too high,

the administrators would spend much time identifying them so

that our approach would become pointless. With 1% and 2% of the

automatable rules wrongly classified, this is not the case.

In RQ3, we searched for the percentage of rules that we can

automate after correcting the extraction process’s errors. If this

number were too low, administrators would spend the same amount

of time for implementing the remaining rules, and the gains of our

approach would be small. Our results show that we can automate

97% of the automatable rules with our approach and dramatically

reduce manual implementation.

In RQ4, we asked for the time taken to execute our approach. If

the steps were too time-consuming, it would be more efficient to do

it manually, and our tooling would be unnecessary. With 245.91s

## /implementations/0/description
Follow the below steps to disable `Location Services`:
1. Tap `Settings` Gear Icon.
2. Tap `Security & Location`.
3. Scroll to the `Privacy` section.
4. Tap `Location`.
5. Toggle to the `OFF` position.

Listing 8: Example of an implementation as part of a rule in

an Android security-configuration guide.

for the tools themselves and 1215.91s for the complete process, our

approach is more efficient than the manual approach.

In RQ5, we searched for the percentage of rules which are cor-

rectly implemented according to the automatic checks. If our ap-

proach implemented the rules wrongly, it would be useless. With

over 97% of correctly implemented rules, our approach implements

almost all rules correctly.

In summary, our evaluation showed that our approach is feasible

and effective.

4 GENERALIZATION AND FURTHERWORK

The main limitation of our extraction step is the fact that this ex-

traction is only possible because of the highly schematic structure

of the descriptions written by CIS and DISA. If they modify their

template for these descriptions, we will have to adjust this step

entirely. Thus, we hope that future guides will have the needed

information in a machine-readable form. A limitation of our im-

plementation of Windows-related guides is the dependency on the

LGPO.exe. If Microsoft decided to remove this tool for changing

Windows system settings, we would have to replace core parts of

the presented approach.

We admit that our approach is only an intermediate solution. In-

stead of converting guides to executables by users or third parties, it

would bemore practical for publishers to attachmachine-executable

codes or links to them to the rules as they are doing it for automatic

checking. Nevertheless, as long as the publishers do not distribute

the guides so that we can quickly and automatically implement

them, we need tools like those we presented in this paper.

ui_name: Location
namespace: secure
name: location_providers_allowed
value:
ON: +network,+gps
OFF: -network,-gps

Listing 9: Example of a definition for an Android-related set-

ting.



## /implementations/0/description
Set the following parameters in `/etc/sysctl.conf` or a
`/etc/sysctl.d/*` file:
```
net.ipv6.conf.all.accept_ra = 0
net.ipv6.conf.default.accept_ra = 0
```
Run the following commands to set the active kernel parameters:
```
# sysctl -w net.ipv6.conf.all.accept_ra=0
# sysctl -w net.ipv6.conf.default.accept_ra=0
# sysctl -w net.ipv6.route.flush=1
```

Listing 10: Example of an implementation in an Ubuntu

Linux security-configuration guide.

Our approach is tailored to Windows and its policies. Thus, the

approach cannot be ported to other platforms without significant

adjustments. Nevertheless, we are developing similar approaches

for Linux OSs and Android in particular and try to achieve similar

results there as well.

In Listing 8, one can see the implementation of an Android-

related rule. It describes highly schematically the actions to imple-

ment. Thus, the difficulty of the extraction process as described in

Figure 1 is comparable to that for the Windows-related guides.

The verification step is more difficult, because we do not have

a similar definition of potential settings and the set of values they

can have. In Windows, we can extract this information from the

ADMX/L files, but in Android, there are – to our best knowledge

– no comparable files available. To port our approach to Android,

we created such definition files for several settings. For the setting

Location, one would find an entry in this definition file as presented

in Listing 9. With this information, we can verify that OFF is a valid

value for this setting. Furthermore, we can use the information that

we can translate OFF to -network,-gps for the transformation to a

low-level automation. Finally, we can implement the rule on a given

Android device via the Android Debug Bridge and the translated

value.

Our work on Android just started, and there are many open

questions: How could be the syntax of an Android definition file?

How can we automatically create such a definition file? Which

settings can we automatically set, e.g., via the Debug Bridge, and

which settings cannot be set or only if we have rooted the device?

How can we handle different Android versions and the fact that we

can automatically configure a setting in one version, e.g., via the

Debug Bridge, and in another version, it is no longer possible?

For the automated implementation of general Linux guides,

please have a look at Listing 10; here, we have the implementation

of a rule of a Ubuntu guide. We can see that there is still a schema

of how the implementation is described. Nevertheless, it is more

complicated. In this example, there are two different steps, one

concerning the modification of a file, the other the execution of

shell commands. Hence, in addition to extracting the code-snippets,

we have to derive the semantics of set file content to and run as well.

If we wanted to verify that the code snippets are valid, we would

have to know the syntax of the specific configuration file and the

semantics, e.g., if net.ipv6.conf.all.accept_ra = 0 is a correct line in

this file. Furthermore, we would have to know the legal parameters

of the program called in the second snippet.

In our future research, we will try to extract this information, e.g.,

from the source code, the documentation, or sample configuration

file to create definition files for the most common commands and

configuration files. In summary, we think that our approach can

be ported from Windows to Linux-based systems, but whether a

comparably high percentage of rules from which automations can

be extracted can be reached remains to be seen.

In the future, work is necessary to provide the foundations that

make security automation easier. The main factor that made our

approach possible was that Microsoft provides machine-readable

information about configuration options for their systems in the

form of ADMX/L files. It follows that vendors should support secu-

rity automation by providing machine-readable information about

security-configuration options and their implementation.

5 RELATEDWORK

Many studies have been conducted in the field of misconfiguration,

e.g. [5, 6, 8, 31, 38]. Especially the study of Dietrich et al. [6] is

relevant for our research. Their study provides strong evidence

that security misconfigurations are more common than usually

assumed. This emphasizes how important and yet underestimated

this field of research currently is. Furthermore, they have identified

the lack of knowledge and experience as core factors for security

misconfiguration and argue that we need more automation in the

whole process to make systems more secure. By using security-

configuration guides, we want to tackle the first problem, with our

automated implementation the second.

Additionally, many researchers explored how to detect and how

to avoid misconfigurations [10, 21, 24, 29]. Rahman et al. [21] ana-

lyzed thousands of Infrastructure-as-a-Code (IaaC) scripts to iden-

tify insecure configurations and security smells. They used these

smells to create a linter for creating more secure IaaC scripts. Al-

though their linter is comparable to the hints we give to the ad-

ministrators, we are targeting different problems. Where they are

extracting knowledge from the IaaC scripts on how to configure sys-

tems securely, we already have this information and have to apply

it. Furthermore, as discussed before, we think that IaaC scripts are

not sufficient to specify security-configuration guides. Similar work

was done by Santolucito et al. [24]. Their framework ConfigV aims

at similar problems as our verification step. In contrast to them, we

cannot learn secure configurations. Instead, these are defined in

the guides, and the constraints do not have to be learned but can

be extracted from the ADMX/L files. Similarly, SPEX, developed by

Xu et al. [37] is not applicable in our case, as we do not have the

source code of the programs we want to configure.

Raab et al. [17–19] created the Elektra framework to validate the

access to configuration values to detect misconfigurations as soon as

possible. We tried to achieve the same with our a-priori verification

process. In their study [19], they investigated how free/libre and

open-source software (FLOSS) can be configured and the problem

of validating configurations for it. One finding is that presently,

configuration validation is encoded in a way unusable for external

validation or introspection tools. AlthoughWindows is not a FLOSS,

we encountered the same problem. This is whywe had to implement

our verification mechanism instead of simply using an existing tool.

Furthermore, Elektra is tailored towards developers who create new



software, not for administrators of existing software and it cannot

handle the Windows policy settings we have to change according

to the guides. Thus, we could not apply Elektra.

A similar approach to Elektra was developed by Xu et al. [36]

with the same problems so we could also not use it in our case. In

their study [35], they have shown how the growing complexity of

the configuration of systems is overwhelming users and systems

administrators. They did not investigate Windows systems, yet

many of their findings apply to our domain, too. For instance, users

have tremendous difficulties because they do not know which pa-

rameters to set and that this induces up to 50% of the configuration

errors. This supports the claim that we need security-configuration

guides created by experts, to be used by system administrators.

Wang et al. [33] present an approach at automatic reverse engi-

neering of an application’s access-control configurations. Although

the application domain is similar to our context, we could not apply

their work for our need as we do not have the source code of the

programs we want to configure securely.

There also is a lot of research in the field of extracting important

parameters or configuration values from human-readable docu-

ments [9, 15, 20, 25, 30, 34, 39, 41]. Yang et al. [39] present an

approach to automatically extract web API specifications from the

documentation of a software similar to the extraction of our config-

uration values from the security-configuration guidelines. However,

the fact that our documents do not contain as many links made

this approach unfeasible in our case. Using NLP, Wong et al. [34]

developed an approach at extracting information from program doc-

umentation to improve automated testing. They use grammar rules

to identify relevant comments and extract constraints from them. In

our case, the security-configuration guides describe concepts from

a higher level then program documentation. Furthermore, we do

not need to extract the constraints from the security-configuration

guide. Thus, this approach was also not applicable in our context.

Closest to our work regarding our aims of providing rule-by-

rule implementation is the OpenScap project [16, 22]. OpenScap

maintains its security-configuration guides for various Linux sys-

tems in a git repository, where each rule is represented by one file;

usually, the file holds references to other files containing artifacts

for automated implementation and check. However, we cannot use

OpenScap. First, OpenScap cannot implement the rules from the

Windows-based guides. Second, if OpenScap could implement them,

we would first have to add the scripts manually to the guides of

CIS or DISA. We think that the guides in the context of OpenScap

are one step ahead of Windows guides published by CIS or DISA

because of the connection between implementation and checking.

In the future, we hope that the publishers distribute their Windows

guides similarly to OpenScap in a form that is as easily imple-

mentable as checkable. We consider our approach an intermediate

solution to bring the automatic implementation of Windows-based

guides to a comparable level as long as this is not the case.

Ongoing activities regarding further improvements of automat-

ing security as carried out by the IETF SACM (Security Automation

and Continuous Monitoring) work group [2, 3, 14] as well as a first in-

dication of the directionwork towards SCAP version 2 as outlined in

a transition document [32], have a clear focus on checking security-

configuration settings and disregard their implementation—which

is precisely the gap we want to close in this work.

To sum up the related work: some approaches use NLP to extract

settings from the documentation or the source code of a program,

but to our best knowledge, no approach extracted the settings

from security-configuration guides. Furthermore, some approaches

like Elektra help to improve the configuration of newly developed

software, but we cannot use them to configure existing and closed-

source Windows systems. We can automatically implement the

guides of some Linux variants with the OpenScap approach if the

publishers distribute them with the scripts necessary for Open-

Scap. However, we cannot use OpenScap to implement existing

Windows-based guides automatically. Thus, we tackled these gaps

in the literature and put the developed components together to

demonstrate that our proposed approach and our PoC implementa-

tion are achieving promising results.

6 CONCLUSION

The complexity of contemporary systems renders their configura-

tion increasingly difficult. This leads to vulnerabilities attackers can

exploit to attack the systems. For a single organization, it is impossi-

ble to know all the configurations to make a specific system secure.

Many organizations use public security-configuration guides to

overcome the lack of knowledge; while many of these guides sup-

port automated compliance checking, they do not provide support

for automated implementation.

In this paper, we demonstrated an approach that can automati-

cally implement Windows security-configuration guides with min-

imal manual effort. Our contribution further encompasses a proof-

of-concept implementation, a step-by-step documentation of the

process, and the evaluation of our approach using existing guides.

Our evaluation has shown that we can automate 83% of the rules

without any manual effort using our NLP extraction. Furthermore,

our extensive benchmark with 12 different guides and over 2014

rules with automatic checks showed that the implementation of

our approach can implement at least 97% of the rules correctly.

With our approach and the results of its evaluation, we believe

we can furthermore contribute as follows: Firstly, we have demon-

strated how organizations that rely on publicly available security-

configuration guides can be aided in reducing effort as well as

reducing errors in the implementation of these guides. Secondly,

we have shown how machine-readable information supporting au-

tomated implementation for Windows systems can be represented

and included in SCAP guides. We hope that our results encourage

publishers of security guides to support better the automated imple-

mentation of their guides by enriching them with such information,

for Windows as well for other target systems. The design of SCAP

v2 has already started [32]: Our work offers timely and relevant

input for the further development of SCAP towards a standard

that meets the requirements of both publishers and consumers of

machine-readable security-configuration guides.

Thirdly, our research underlines the need for machine-readable

specifications of (security) configuration settings: standardization

and support of a format for this purpose by vendors would sig-

nificantly aide in all tasks concerned with configuring systems

securely.

We plan to release substantial parts of our Python code-base.



REFERENCES
[1] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing

with Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.".

[2] Henk Birkholz, Jarrett Lu, John Strassner, Nancy Cam-Winget, and Adam W.
Montville. 2018. Security Automation and Continuous Monitoring (SACM) Ter-
minology. Internet-Draft draft-ietf-sacm-terminology-16. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-sacm-terminology-16
Work in Progress.

[3] Nancy Cam-Winget and Lisa Lorenzin. 2017. Security Automation and Contin-
uous Monitoring (SACM) Requirements. RFC 8248. https://doi.org/10.17487/
RFC8248

[4] CIS. 2019. CIS-CAT Pro. https://www.cisecurity.org/cybersecurity-tools/cis-cat-
pro/

[5] Andrea Continella, Mario Polino, Marcello Pogliani, and Stefano Zanero. 2018.
There’s a Hole in That Bucket!: A Large-scale Analysis of Misconfigured S3
Buckets. In Proceedings of the 34th Annual Computer Security Applications Con-
ference (San Juan, PR, USA) (ACSAC ’18). ACM, New York, NY, USA, 702–711.
https://doi.org/10.1145/3274694.3274736

[6] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig.
2018. Investigating System Operators’ Perspective on Security Misconfigurations.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1272–1289.
https://doi.org/10.1145/3243734.3243794

[7] DISA. 2019. DISA Microsoft Windows Server 2016 STIG Benchmark. Available
from https://dl.dod.cyber.mil/wp-content/uploads/stigs/zip/U_MS_Windows_
Server_2016_V1R13_STIG_SCAP_1-2_Benchmark.zip. Accessed: 2019-01-22, we
used the version 7, current version is 13.

[8] A. K. Jha, S. Lee, and W. J. Lee. 2017. Developer Mistakes in Writing Android
Manifests: An Empirical Study of Configuration Errors. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). 25–36. https:
//doi.org/10.1109/MSR.2017.41

[9] Dongpu Jin, Myra B. Cohen, Xiao Qu, and Brian Robinson. 2014. PrefFinder:
Getting the Right Preference in Configurable Software Systems. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software Engineering
(Vasteras, Sweden) (ASE ’14). ACM, New York, NY, USA, 151–162. https://doi.
org/10.1145/2642937.2643009

[10] L. Keller, P. Upadhyaya, and G. Candea. 2008. ConfErr: A tool for assessing
resilience to human configuration errors. In 2008 IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC (DSN). 157–166. https:
//doi.org/10.1109/DSN.2008.4630084

[11] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[12] Microsoft Corporation. 2016. Local Group Policy Object Utility. https://www.
microsoft.com/en-us/download/details.aspx?id=55319 Accessed: 2019-01-18.

[13] Microsoft Corporation. 2017. Security policy settings. https:
//docs.microsoft.com/en-us/windows/security/threat-protection/security-
policy-settings/security-policy-settings

[14] Adam W. Montville and Bill Munyan. 2018. Security Automation and Continuous
Monitoring (SACM) Architecture. Internet-Draft draft-ietf-sacm-arch-00. Internet
Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-sacm-
arch-00 Work in Progress.

[15] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring Method Specifications from Natural Language API
Descriptions. In Proceedings of the 34th International Conference on Software
Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, Piscataway, NJ, USA,
815–825. http://dl.acm.org/citation.cfm?id=2337223.2337319

[16] Martin Preisler and Marek Haicman. 2018. Security Automation for Contain-
ers and VMs with OpenSCAP. In USENIX LISA. Washington. Available from
https://martin.preisler.me/...

[17] Markus Raab. 2015. Safe Management of Software Configuration. In Proceedings
of the CAiSE’2015 Doctoral Consortium at the 27th International Conference on
Advanced Information Systems Engineering (CAiSE 2015), Stockholm, Sweden, June
11-12, 2015. 74–82. http://ceur-ws.org/Vol-1415/CAISE2015DC09.pdf

[18] Markus Raab. 2016. Improving system integration using a modular configu-
ration specification language. In Companion Proceedings of the 15th Interna-
tional Conference on Modularity, Málaga, Spain, March 14 - 18, 2016. 152–157.
https://doi.org/10.1145/2892664.2892691

[19] Markus Raab and Gergö Barany. 2017. Challenges in Validating FLOSS Config-
uration. In Open Source Systems: Towards Robust Practices - 13th IFIP WG 2.13
International Conference, OSS 2017, Buenos Aires, Argentina, May 22-23, 2017,
Proceedings. 101–114. https://doi.org/10.1007/978-3-319-57735-7_11

[20] A. Rabkin and R. Katz. 2011. Static extraction of program configuration options.
In 2011 33rd International Conference on Software Engineering (ICSE). 131–140.
https://doi.org/10.1145/1985793.1985812

[21] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The Seven Sins: Security
Smells in Infrastructure As Code Scripts. In Proceedings of the 41st International

Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE
Press, Piscataway, NJ, USA, 164–175. https://doi.org/10.1109/ICSE.2019.00033

[22] Red Hat, Inc. 2010. OpenSCAP. https://www.open-scap.org. Accessed: 2018-12-
18.

[23] SaltStack, Inc. 2011. SaltStack. https://github.com/saltstack/salt Accessed:
2019-01-07.

[24] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruzica Piskac.
2017. Synthesizing Configuration File Specifications with Association Rule
Learning. Proc. ACM Program. Lang. 1, OOPSLA, Article 64 (Oct. 2017), 20 pages.
https://doi.org/10.1145/3133888

[25] M. Sayagh and A. E. Hassan. 2020. ConfigMiner: Identifying the Appropriate
Configuration Options for Config-related User Questions by Mining Online
Forums. IEEE Transactions on Software Engineering (2020), 1–1. https://doi.org/
10.1109/TSE.2020.2973997

[26] Patrick Stöckle, Bernd Grobauer, and Alexander Pretschner. 2020.
Repository to demonstrate the steps of the automated hardening
process. https://github.com/tum-i22/disa-windows-server-2016
swh:1:dir:c3803619f51702199b19405547e2be2f2f55bdd2.

[27] Patrick Stöckle, Bernd Grobauer, and Alexander Pretschner. 2020. Repos-
itory with the check results for CIS guides before and after implement-
ing the guides. https://github.com/tum-i22/CIS-Benchmark-Evaluation
swh:1:dir:b5c15f48b2c288f58533c9354bea3703ffbbb0dd.

[28] Patrick Stöckle, Bernd Grobauer, and Alexander Pretschner. 2020.
Updated version of the step repository with Windows Server
2019. https://github.com/tum-i22/disa-windows-server-2019
swh:1:dir:13ffd9d2566c64afdedd414336a95a35605392d7.

[29] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. 2007. AutoBash: Improving Con-
figuration Management with Operating System Causality Analysis. SIGOPS Oper.
Syst. Rev. 41, 6 (Oct. 2007), 237–250. https://doi.org/10.1145/1323293.1294284

[30] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*Icomment:
Bugs or Bad Comments?*/. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 145–158.
https://doi.org/10.1145/1323293.1294276

[31] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
Configuration Management at Facebook. In Proceedings of the 25th Symposium
on Operating Systems Principles (Monterey, California) (SOSP ’15). ACM, New
York, NY, USA, 328–343. https://doi.org/10.1145/2815400.2815401

[32] David Waltermire and Jessica Fitzgerald-McKay. 2018. Transitioning to the Se-
curity Content Automation Protocol (SCAP) Version 2. Technical Report. NIST.
Available from https://csrc.nist.gov/publications/detail/white-paper/2018/09/10/
transitioning-to-scap-version-2/final.

[33] Rui Wang, XiaoFeng Wang, Kehuan Zhang, and Zhuowei Li. 2008. Towards
Automatic Reverse Engineering of Software Security Configurations. In Pro-
ceedings of the 15th ACM Conference on Computer and Communications Secu-
rity (Alexandria, Virginia, USA) (CCS ’08). ACM, New York, NY, USA, 245–256.
https://doi.org/10.1145/1455770.1455802

[34] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan. 2015. DASE:
Document-assisted Symbolic Execution for Improving Automated Software Test-
ing. In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 620–631.
http://dl.acm.org/citation.cfm?id=2818754.2818831

[35] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, You Have Given Me Too Many Knobs!: Under-
standing and Dealing with Over-designed Configuration in System Software.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering (Bergamo, Italy) (ESEC/FSE 2015). ACM, New York, NY, USA, 307–319.
https://doi.org/10.1145/2786805.2786852

[36] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce
Failure Damage. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 619–634. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/xu

[37] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Miscon-
figurations. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP ’13). ACM, New York, NY,
USA, 244–259. https://doi.org/10.1145/2517349.2522727

[38] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Configu-
ration Errors: A Survey. ACM Comput. Surv. 47, 4, Article 70 (July 2015), 41 pages.
https://doi.org/10.1145/2791577

[39] J. Yang, E. Wittern, A. T. T. Ying, J. Dolby, and L. Tan. 2018. Towards Extracting
Web API Specifications fromDocumentation. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). 454–464.

[40] Zuoning Yin, XiaoMa, Jing Zheng, Yuanyuan Zhou, LakshmiN. Bairavasundaram,
and Shankar Pasupathy. 2011. An Empirical Study on Configuration Errors in
Commercial and Open Source Systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (Cascais, Portugal) (SOSP ’11). ACM,
New York, NY, USA, 159–172. https://doi.org/10.1145/2043556.2043572



[41] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2011. Inferring specifications
for resources from natural language API documentation. Automated Software
Engineering 18, 3 (01 Dec 2011), 227–261. https://doi.org/10.1007/s10515-011-
0082-3


